

Overview of the General Methodology of Oil Removal Operations on Baltic Shipwrecks

on the example of dangerous wrecks of the Gulf of Gdańsk

Dr inż. Benedykt Hac International Conference: Dangerous Wrecks Vol. 2

GENERAL METHODOLOGY of oil removal operations on baltic shipwrecks

General Methodology of Oil Removal Operations on Baltic Shipwrecks published by the MARE Foundation is a proposal of a <u>Wreck Management</u> <u>Plan for Poland</u> and was developed on the basis of programs already being implemented in Great Britain and Sweden.

The full version of the document (as well as a summary *"Methodology in a nutshell"*) can be downloaded at:

POLISH version: www.fundacjamare.pl/metodykaPL

ENGLISH VERSION: https://fundacjamare.pl/methodologyENG/

TABLE OF CONTENTS

CHAPTER 1: Introduction	4
CHAPTER 2: Survey methods	7
21 Determining the order and methods of data collection	7
2.2 Important steps in the wreck investigation, having an impact on the workload and the quality	,
of acquired knowledge	9
2.2.1 Magnetometric and geoseismic tests	9
2.2.2 Geological, biological and ecotoxicological tests	
2.2.3 In situ observations and measurements (photographic, film and sonar documentation)	10
2.3 Other important information to be taken into account when investigating the wreck	11
2.3.1 Estimating the risk of fuel leakage at all stages of the procedure	11
2.3.2 Construction of the vessel and its impact on the fuel distribution	11
2.4 Ammunition, unexploded mines, and other dangerous materials in the wreck	14
CHAPTER 3: Wreck environmental risk assessment methods	16
3.1 Assessing the risk assessment methods of wrecks constituting a potential threat	
to the environment	16
3.1.1 General frames of risk management	17
3.2 Overview of the Environmental Desk-Based Assessment (E-DBA)	19
3.21 Key definitions	20
3.2.2 E-DBA Process diagram	21
3.2.3 Likelihood of oil release	23
3.2.4 Oil release modelling	
3.2.5 Quantification of risk for sensitive areas and selected environmental receptors	30
3.2.6 Final risk score	30
3.2.7. Calculating confidence score	
3.3 Risk assessment methodology for Polish wrecks	32
CHAPTER 4: Methodology for conducting geophysical surveys	40
4.1 Positioning systems	40
4.1.1 RTK GPS – Trimble SPS 851 satellite positioning system	40
4.1.2 System for providing the heeling lever, heading and acceleration	40
4.1.3 USBL Sonardyne Ranger 2 underwater positioning system	41
4.2 Bathymetric and 3D data	41
4.21 Data acquisition methods	43
4.2.2 Data presentation and processing	
4.3 Sidescan sonar	45
4.3.1 An example of a sidescan sonar used in marine surveys	46
4.4 Sub-bottom profilers (SBP)	48
4.5 Magnetometer Surveys	49
4.6 Marine laser systems	
4.7 Systems supporting environmental data collection	54

4.7.1 Sensors used for measurements of temperature, salinity, and oxygen content	
4.7.2 AWAC profiler for measurements of currents and waves	
4.7.3 Environmental monitoring buoy	55
4.8 Geological analysis	
4.8.1 Scoop sampling	
4.8.2 Core samples	
4.9 Acquiring data using optical methods	59
4.9.1 Photographic and film data	59
4.9.2 Photographic data showing oil spills (also from wrecks)	60
4.10 Methodology of chemical and biological tests	
4.10.1 Methodology for testing water, bottom sediments and marine organisms	62
4.10.2 Analysis of near-bottom water	
4.10.3 Chemical analysis of benthos organisms	
4.11 Biological analysis	
4.11.1 Material and method of biological analysis	
Sampling	
Analysis of macrobenthos structure	
Assessment of ecological status	
4.12 Ecotoxicological analysis	
4.13 Ecotoxicological analysis – methodology	
4.13.1 Determination of acute toxicity using marine bacteria Vibrio fischeri	
4.13.2 Chronic toxicity using Ostracodtoxkit F™ test	67
4.13.3 Determination of toxicity using Sorghum sacharatum plants	67

CHAPTER 5: Review of available methods and technologies for removing fuel from shipwrecks

1	and remediating the contaminated sediments	71
	5.1 Monitored natural recovery	72
	5.2 Separating the contaminated area with a fence	74
	5.3 Solidification and stabilisation of contaminated sediment. Use of fly ash	76
	5.4 Capping the contaminated area	78
	5.5 Bioremediation	82
	5.6 Removal of contaminated sediment by dredging	85
	5.7 Hot-tappin gand pumping fuel residues from the wreck with a ROV	89
	5.8 Auxiliary supporting technologies for oil removal	93
	5.8.1 Booms	93
	5.8.2 Skimmers	94
	5.8.3 Other pumps	95
	5.8.4 Oil, water and sediment separators	95
	5.8.5 Other technologies	95
	5.9 Comparison of methods and proposals for remediation of contamination	96
	5.9.1 General costs	96

"Dangerous wreck" – what does it mean?

The term "dangerous wreck" should be understood as a wreck containing in its tanks (or any other enclosed space) fuel and/or other hazardous substances in quantities greater than 10 m³. To be categorized as a dangerous to the environment, such a wreck must be located less than 10 nautical miles from the coast that is a sand beach, a rocky beach or a cliff. Depending on such parameters as the amount of fuel, the distance from the coast and the type of the coastline, a concept of the **RISK DEGREE** has been introduced:

- MODERATELY DANGEROUR or DANGEROUS WRECK is a shipwreck containing from 10 to 500 m³ of fuel, lying at a distance of 1 to 10 nautical miles from sandy, cliff, rocky or gravel beaches;
- VERY DANGEROUS WRECK is a shipwreck containing more than 500 m³ of fuel and lying at a distance less than 1 nautical mile from the coast.

When classifying shipwrecks, other parameters such as the uniqueness of the site, where the wreck is located (e.g. closeness of natural reserves, protected areas of unique environmental value, presence of endangered fish and other marine or endemic species), as well as many other environmental aspects should be also taken into account.

Examples of dangerous wrecks in the Gulf of Gdańsk – **Stuttgart and Franken**

Algorithm 1. Steps to be taken during the study of wrecks in terms of risks and threats to the environment

Score

< 22

22-24

Score

8-12

13-19

В

		B				
Risk assessment criteria	Relevant oil spill model (shoreline, sea surface, water column or sediment)	↓ Low (score as 1)	Medium (score as 2)	High (score as 3)	•	
Current and planr	ed infrastructure					
Offshore wind farms	Sea surface	No overlap of sea surface oil with any windfarm.	Seasonal overlap of sea surface oil at a concen- tration above the threshold for more than 5% of a windfarm lease area.	Year round overlap of sea surface oil at a concentration above the threshold for more than 5% of a windfarm lease area.	For order release	the trac revered
Offshore oil and	Sea surface	No overlap of sea surface oil with any	Seasonal overlap of sea surface oil at a concen- tration above the	Year round overlap of sea surface oil at a concentration above the	with oil with relases	tions to the site
gas installations		installation.	threshold for any instal- lation.	threshold for any instal- lation.	Low risk	< 5%
Industrial water intakes	Shoreline	No overlap with any industrial water intake.	Seasonal overlap at a concentration above the threshold with any industrial water intake.	Year round overlap at a concentration above the threshold with any industrial water intake.	High risk	> 50%
Aquaculture	Water column and sea surface	No overlap with any aquaculture facility.	Seasonal overlap at a concentration above the threshold with any aquaculture facility.	Year round overlap at a concentration above the threshold with any aquaculture facility.		
Tourism and leisu	re areas				•	
Tourism	Shoreline	No overlap with any known tourist areas impacted.	Seasonal overlap at a concentration above the threshold of any known tourist areas impacted.	Year round overlap at a concentration above the threshold of any known tourist areas impacted.		
High use areas	Shoreline	No overlap with any high use areas.	Seasonal overlap at a concentration above the threshold with any high use areas.	Year round overlap at a concentration above the threshold with any high use areas.		
Fishing grounds						
Demersal	Sediment and sea surface	<180 days of fishing effort impacted in area of oil contami- nation occurring.	180-365 days of fishing effort impacted in area of oil contamination occurring.	>365 days of fishing effort impacted in area of oil contamination occurring.		
Pelagic	Water column and sea surface	<180 days of fishing effort impacted in area of oil contami- nation occurring.	180-365 days of fishing effort impacted in area of oil contamination occurring.	>365 days of fishing effort impacted in area of oil contamination occurring.		
Crustacean	Sediment and sea surface	<180 days of fishing effort impacted in area of oil contami- nation occurring.	180-365 days of fishing effort impacted in area of oil contamination occurring.	>365 days of fishing effort impacted in area of oil contamination occurring.		

С

gh risk	Medium risk	Low risk				
nere is a high potential for oil to be relea- d. Detailed analysis is required to under- and the severity of the threat to sensitive arine receptors.	The risk of oil being released is moderate. Further analysis is recommended to under- stand the severity of the threat to sensitive marine receptors.	The risk of oil being released is minimal. If the condition of a wreck changes a re-assessment is recommended to con- firm risk.				
RECOMMENDED ACTIONS						
sessment has shown that there is a onsiderable threat to sensitive marine ceptors, essential management actions Il need to be considered.	The assessment has shown there is a threat to sensitive marine receptors, monitoring and that management may be required.	If the condition of a wreck changes a re-assessment is recommended to con- firm risk. Monitoring may be required.				

DEFINITIONS OF CONFIDENCE LEVELS IN THE RISK ASSESSMENT PROCESS

confidence	Medium confidence	Low confidence	
data and information used are timely, best available, robust and the outputs well supported by evidence. There is sensus amongst experts.	The data and information is based on limited evidence and or proxy information. There is a majority agreement between experts; but conflicting evidence/opposing views exist.	The data and information is limited and it not well supported by evidence. There is no clear agreement amongst experts.	
	FINAL RISK		

ASSESSMENT REPORT

CHAPTER 2: Survey methods

In order to determine all parameters relevant to the assessment of a wreck and the risk posed by it the following actions should be carried out:

- Desk-based review (i.e. examination of existing documents and information);
- Conducting geophysical surveys (i.e. bathymetric surveys, sidescan sonar, circulating sonar or an acoustic camera surveys, sea bottom surveys using an acoustic sub-bottom profiler (SBP), magnetometric survey of metal object distribution)
- Geological exploration of the seabed;
- Chemical tests of soil and near-bottom water;
- Biological and ecotoxicological tests of bottom sediment samples
- Obtaining hydrographic data /navigational data
- Inspection carried out on the wreck using Remote Operated Vehicles (ROVs);
- Collection and analysis of environmental data other than chemical, biological and other parameters

CHAPTER 3: Wreck environmental risk assessment methods.

The Wreck Oil Removal Program implemented in the United States by the National Oceanic and Atmospheric Administration

DEEPP Project ("Development of European guidelines for Potentially Polluting shipwrecks")

Norwegian Pollution Control Authority – NPCA

The South Pacific Regional Environment Program The Swedish model "VRAKA – Probabilistic risk assessment of shipwrecks" The British risk assessment system called "Wreck assessment protocol – Environmental Desk Based Assessment"

Best method for the Baltic Region

The **British E-DBA method** seems to be the most appropriate for implementation in Poland in the region of southern Baltic.

It is relatively simple, and at the same time highly effective.

It permits to assess the risk based on a three-step scale and to assess the confidence level in risk assessment results.

This method takes into account two basic scenarios:

- an acute release and its impact on the environment,
- and a slow release and its long-term effect on the marine environment.

It permits a relatively quick oil release risk assessment for different wrecks and their classification, <u>but it does not allow to</u> <u>determine the changes of the risk level with time. Such</u> <u>predictions can however be made using the VRAKA method.</u>

of Defence

CHAPTER 4: Methodology for conducting geophysical surveys

- Positioning systems
- Bathymetric and 3D data
- Sidescan sonars
- Sub-bottom profilers
- Magnetometere surveys
- Marine laser systems
- Environmental data
- Geological analysis
- Photovideo data
- Chemical and biological tests
- Exotoxicological analysis

CHAPTER 5: Review of available methods and technologies for removing fuel and remediating the contaminated sediments

in situ

ex situ

Monitored natural recovery

Biodegradation

Sorption

Sedimentation

Separating the contaminated area with a fence

Solidification and stabilisation of contaminated sediment (use of fly ash)

Capping the contaminated area

CAPPING OF WRECK BY A ROV

Bioremediation

Removal of contaminated sediment by dredging

Hot-tapping and pumping fuel residues from the wreck with a ROV

ROV connects to the tool and guides it to the operation place

Auxiliary supporting technologies for oil removal

General costs assessment

Complexity of opera- tion	Waters	Depth metres/ feet	Oil viscosity	Water tempera- ture	Wreck condi- tion	Vessel factors	Distance from mo- bilisation point	Cost range
		←	•	 ;	←			
Simple	Protected	65	Low	High	Good	Not very old. Optimal construction. Not very damaged Thick plating. Low location sensitivity	Local	\$ 1-5 M
Moderate	Problems with weather or sea condition	65-164	Medium	Moderate	Medium	Not very old. Stable structure. Not very damaged. Thick plating of the hull. Low location sensitivity	Regional	\$ 2-7 M
Complex	Open	164-820	High	Low	Weak	Old. Multiple structure damage. High location sensitivity	Distant	\$ 5-20+ M
Highly complex	Open	>820	High	Very low	Very weak	Very old. Poor structure. Severely damaged. Covered with corroded plating, Highest location sensitivity	Distant	\$ 20-100+ M

➔ Interrelated factors

Table 12. Daily staff rates

Personnel	US \$
Office administration, including communications	1,361
Salvage Master	2,029
Naval Architect or Salvage Officer/Engineer	1,692
Assistant Salvage Officer/Engineer	1,356
Diving Supervisor	1,356
HSE qualified diver or his equivalent but excluding saturation or mixed gas drivers	1,217
Salvage Foreman	1,014
Riggers, Fitters, Equipment Operators	812
Specialist Advisors – Fire Fighters, Chemicals, Pollution Control	1,361

Table 13. Costs of equipment (cost per one day of rental/work)

Portable salvage equipment	US \$
Hot Tap Machine, including support equipment	1,351
Air Lift 8"	405
Oil Boom, 48", per 10 metres	263
Pumping Equipment Air 3 "Hydraulic 8"	117 1,351
Air Hose 2"	11

Α

В

Final words

- Determining the necessary procedures to be followed while examining the impact of wrecks and the fuel they contain on the marine environment, estimating the threats those wrecks pose to the environment, and how to mitigate the effects of these threats – is at present one of the most pressing challenges in the protection of the Southern Baltic.
- It should be an important task for scientific institutions dealing with the marine environment, as well as for the management bodies, responsible for marine areas, i.e. maritime administration at all levels.
- <u>A situation where, despite the classification of</u> <u>the wrecks as dangerous, appropriate measures</u> <u>to prevent the environmental disaster are not</u> <u>taken, is not acceptable.</u>

Thank you for your attention!

Dr inż. Benedykt Hac International Conference: Dangerous Wrecks Vol. 2